
Adafruit AirLift Shield - ESP32 WiFi Co-Processor
Created by Brent Rubell

Last updated on 2020-05-05 10:40:43 AM EDT

Overview

Give your Arduino project a lift with the Adafruit AirLift Shield (https://adafru.it/F6v) - a shield that lets you use the
powerful ESP32 as a WiFi co-processor. You probably have your favorite Arduino-compatible (like the Metro
M4 (https://adafru.it/A5S) or the classic Metro 328 (https://adafru.it/METROXMETR)) that comes with its own set of
awesome peripherals and lots of libraries. But it doesn't have WiFi built in! So let's give that chip a best friend, the
ESP32. This chip can handle all the heavy lifting of connecting to a WiFi network and transferring data from a site, even
if it's using the latest TLS/SSL encryption (it has root certificates pre-burned in).

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 3 of 53

https://www.adafruit.com/product/4285
https://www.adafruit.com/product/3382
https://www.adafruit.com/product/2488
https://learn.adafruit.com/assets/74345
https://learn.adafruit.com/assets/74351
https://learn.adafruit.com/assets/74349
https://learn.adafruit.com/assets/74355
https://learn.adafruit.com/assets/74356
https://learn.adafruit.com/assets/74357
https://learn.adafruit.com/assets/74359
https://learn.adafruit.com/assets/74358
https://learn.adafruit.com/assets/74362
https://learn.adafruit.com/assets/74361

Having WiFi managed by a separate chip means your code is simpler, you don't have to cache socket data, or compile
in & debug an SSL library. Send basic but powerful socket-based commands over 8MHz SPI for high speed data
transfer. You can use any 3V or 5V Arduino, any chip from the ATmega328 and up (although the '328 will not be able
to do very complex tasks or buffer a lot of data). It also works great with CircuitPython, a SAMD51/Cortex M4 minimum
required since we need a bunch of RAM. All you need is the SPI bus and 2 control pins plus a power supply that can
provide up to 250mA during WiFi usage.

We placed an ESP32 module on a shield with a separate 3.3V regulator, and a tri-state chip for MOSI so you can share
the SPI bus with other shields. We also tossed on a micro SD card socket, you can use that to host or store data you
get from the Internet. Arduinos based on the ATmega328 (like the UNO) cannot use both the WiFi module and SD
library at the same time, they don't have enough RAM. Again, we recommend an M0 or M4 chipset for use with
Arduino, M4 for CircuitPython!

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 4 of 53

Comes fully assembled and tested, pre-programmed with ESP32 SPI WiFi co-processor firmware that you can use in
CircuitPython to use this into WiFi co-processsor (https://adafru.it/Evl). We also include some header so you can solder
it in and plug right into your Arduino-compatible, but you can also pick up a set of stacking headers to stack
above/below your board.

We've tested this with all our Metros and it should work just fine with them except the Metro M4
Airlifts (https://adafru.it/F6o) (because they already have WiFi!). For use in Arduino, the '328 and '32u4 you can do basic
connectivity and data transfer but they do not have a lot of RAM so we don't recommend them - use the Metro M0, M4
or similar, for best results! For CircuitPython use, a Metro M4 works best - the M0 series does not have enough RAM in

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 5 of 53

https://github.com/ladyada/Adafruit_CircuitPython_ESP32SPI
https://www.adafruit.com/product/4000

CircuitPython.

The firmware on board is a slight variant of the Arduino WiFiNINA core, which works great! (https://adafru.it/E7O) At this
time connection to Enterprise WiFi is not yet supported.

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 6 of 53

https://github.com/adafruit/nina-fw

Pinouts

There's a lot jam-packed into this shield! Let's take a look at what we've got going on.

Power Pins

GND - Common power/logic ground.

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 7 of 53

GND - Common power/logic ground.
3V - this is the output from the 3.3V regulator. The regulator can supply 500mA peak but half of that is drawn by
the ESP32, and it's a fairly power-hungry chip.
5V - This is the input to the regulator
IOr - This is IORef, the IO voltage we will communicate with and is required.

SPI Interface Pins

Both ESP32 and SD card use SPI to send and receive data. These pins are labeled CLK MISO MOSI and have level
shifting so you can use this shield with 3.3V or 5V microcontroller boards.

By default the 2x3 pin ICSP header on the right hand side is where the SPI signals are found.

ESP32 Control Pins

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 8 of 53

Required Control Pins:

BUSY - this pin is an input from the AirLift, it will let

us know when its ready for more commands to be

sent. This is 3.3V logic out, can be read by 3-5V

logic. This pin must be connected.

RST- this pin is an output to the AirLift. Set low to

put the AirLift into reset. You should use this pin,

even though you might be able to run for a short

while without it, it's essential to 'kick' the chip if it

ever gets into a locked up state. Level shifted so

can be 3-5V logic

Optional Control Pins:

GPIO0 - this is the ESP32 GPIO0 pin, which is

used to put it into bootloading mode. It is also

used if you like when the ESP32 is acting as a

server, to let you know data is ready for reading.

It's not required, you'll need to solder the pad on

the bottom of the shield to connect it.

RX & TX - Serial data in and Serial data out, used

for bootloading new firmware only. Leave

disconnected when not uploading new WiFi

firmware to the AirLift (which is a rare occurrence).

You'll need to solder the two pads on the bottom

of the shield to use these pins.

SD Card Interface

There's a lot of space available on this shield so we also

stuck on a micro SD card holder, great for datalogging

or storing data to transmit over WiFi.

In addition to the shared SPI pins, the SD (chip select)

pin is also used. It can be re-assigned to any pin by

cutting the trace underneath the board and rewiring. If

the SD card is not used, the SD pin can be used for any

other purpose

LEDs

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 9 of 53

https://learn.adafruit.com/assets/77288
https://learn.adafruit.com/assets/77218

There is a small RGB LED to the left of the ESP32. These

RGB LEDs are available in the Arduino and CircuitPython

libraries if you'd like to PWM them for a visual alert.

They're connected to the ESP32's pins 26 (Red), 25

(Green), and 27 (Blue).

Prototyping Area

We have a big grid of prototyping holes and power rails

if you want to make some custom circuitry!

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 10 of 53

https://learn.adafruit.com/assets/77216
https://learn.adafruit.com/assets/77215

Assembly

Installing Standard Headers

The shield comes with 0.1" standard header. Standard header does not permit stacking but it is mechanically stronger
and they're much less expensive too! If you want to stack a shield on top, do not perform this step as it is not possible
to uninstall the headers once soldered in! Skip down to the bottom for the stacking tutorial

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 11 of 53

Break apart the 0.1" header into 6, 8 and/or 10-pin long

pieces and slip the long ends into the headers of your

Arduino.

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 12 of 53

https://learn.adafruit.com/assets/77253
https://learn.adafruit.com/assets/77254

Place the assembled shield on top of the header-ed

Arduino so that all of the short parts of the header are

sticking through the outer set of pads

Solder each one of the pins into the shield to make a

secure connection

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 13 of 53

https://learn.adafruit.com/assets/77255
https://learn.adafruit.com/assets/77257
https://learn.adafruit.com/assets/77258

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 14 of 53

https://learn.adafruit.com/assets/77259
https://learn.adafruit.com/assets/77261

That's it! Now you can install the 2x3 header

Solder the 2x3 header so that it's pointing downwards

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 15 of 53

https://learn.adafruit.com/assets/77262
https://learn.adafruit.com/assets/77263

Stack Alert!

If you want to stack a shield on top of the WiFi Shield, you'll want to pick up some stacking headers and use those
instead of the plain header shown here!

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 16 of 53

https://learn.adafruit.com/assets/77264
https://learn.adafruit.com/assets/77265
https://learn.adafruit.com/assets/77266

Wanna stack? This tutorial shows how to use the plain

header to connect to an Arduino. If you want to use

stacking headers (https://adafru.it/dsu), don't follow

these steps!

Start by sliding the 10 pin, 2 x 8 pin and 6-pin stacking

headers into the outer rows of the shield from the top.

Then flip the board over so its resting on the four

headers. Pull on the legs if necessary to straighten them

out.

Tack one pin of each header, to get them set in place

before more soldering. If the headers go crooked you

can re-heat the one pin while re-positioning to straighten

them up

Once you've tacked and straightened all the headers,

go back and solder the remaining pins for each header.

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 17 of 53

https://learn.adafruit.com/assets/77267
https://learn.adafruit.com/assets/77268
https://www.adafruit.com/product/85
https://learn.adafruit.com/assets/77269
https://learn.adafruit.com/assets/77270

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 18 of 53

https://learn.adafruit.com/assets/77271
https://learn.adafruit.com/assets/77272
https://learn.adafruit.com/assets/77273

Insert the 2x3 stacking header as shown.

Solder into place.

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 19 of 53

https://learn.adafruit.com/assets/77274
https://learn.adafruit.com/assets/77275
https://learn.adafruit.com/assets/77276

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 20 of 53

https://learn.adafruit.com/assets/77277
https://learn.adafruit.com/assets/77278
https://learn.adafruit.com/assets/77279

CircuitPython

It's easy to use Adafruit AirLift with CircuitPython and the Adafruit CircuitPython
ESP32SPI (https://adafru.it/DWV) module. This module allows you to easily add WiFi to your project.

CircuitPython Microcontroller Pinout

To use the board's pins with the AirLift shield, copy the following lines into your code:

esp32_cs = DigitalInOut(board.D10)
esp32_ready = DigitalInOut(board.D7)
esp32_reset = DigitalInOut(board.D5)

If you wish to use the GPIO0 pin on the ESP32 - solder the jumper on the back of the shield, highlighted below:

Then, include the following code to use the pin:

esp32_gpio0 = DigitalInOut(board.D6)

CircuitPython Installation of ESP32SPI Library

You'll need to install the Adafruit CircuitPython ESP32SPI (https://adafru.it/DWV) library on your CircuitPython board.

First make sure you are running the latest version of Adafruit CircuitPython (https://adafru.it/Amd) for your board.

The ESP32SPI library requires an M4 or better microcontroller! The M0 will not work.�

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 21 of 53

https://github.com/adafruit/Adafruit_CircuitPython_ESP32SPI
https://github.com/adafruit/Adafruit_CircuitPython_ESP32SPI
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython

Next you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find and install these
libraries from Adafruit's CircuitPython library bundle (https://adafru.it/uap). Our CircuitPython starter guide has a great
page on how to install the library bundle (https://adafru.it/ABU).

You can manually install the necessary libraries from the bundle:

adafruit_esp32spi.mpy
adafruit_requests.mpy
adafruit_bus_device

Before continuing make sure your board's lib folder or root filesystem has the adafruit_esp32spi.mpy, and
adafruit_bus_device files and folders copied over.

Next connect to the board's serial REPL (https://adafru.it/Awz) so you are at the CircuitPython >>> prompt.

CircuitPython Usage

Copy the following code to your code.py file on your microcontroller:

import board
import busio
from digitalio import DigitalInOut

from adafruit_esp32spi import adafruit_esp32spi

print("ESP32 SPI hardware test")

esp32_cs = DigitalInOut(board.D10)
esp32_ready = DigitalInOut(board.D7)
esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

if esp.status == adafruit_esp32spi.WL_IDLE_STATUS:
 print("ESP32 found and in idle mode")
print("Firmware vers.", esp.firmware_version)
print("MAC addr:", [hex(i) for i in esp.MAC_address])

for ap in esp.scan_networks():
 print("\t%s\t\tRSSI: %d" % (str(ap['ssid'], 'utf-8'), ap['rssi']))

print("Done!")

Connect to the serial monitor to see the output. It should look something like the following:

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 22 of 53

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/the-repl

Make sure you see the same output! If you don't, check your wiring. Note that we've changed the pinout in the code
example above to reflect the CircuitPython Microcontroller Pinout at the top of this page.

Once you've succeeded, continue onto the next page!

If you can read the Firmware and MAC address but fails on scanning SSIDs, check your power supply, you
may be running out of juice to the ESP32 and it's resetting�

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 23 of 53

Internet Connect!

Once you have CircuitPython setup and libraries installed we can get your board connected to the Internet.

To get connected, you will need to start by creating a secrets file.

What's a secrets file?

We expect people to share tons of projects as they build CircuitPython WiFi widgets. What we want to avoid is people
accidentally sharing their passwords or secret tokens and API keys. So, we designed all our examples to use a
secrets.py file, that is in your CIRCUITPY drive, to hold secret/private/custom data. That way you can share your main

project without worrying about accidentally sharing private stuff.

Your secrets.py file should look like this:

This file is where you keep secret settings, passwords, and tokens!
If you put them in the code you risk committing that info or sharing it

secrets = {
 'ssid' : 'home ssid',
 'password' : 'my password',
 'timezone' : "America/New_York", # http://worldtimeapi.org/timezones
 'github_token' : 'fawfj23rakjnfawiefa',
 'hackaday_token' : 'h4xx0rs3kret',
 }

Inside is a python dictionary named secrets with a line for each entry. Each entry has an entry name (say 'ssid') and

then a colon to separate it from the entry key 'home ssid' and finally a comma ,

At a minimum you'll need the ssid and password for your local WiFi setup. As you make projects you may need more

tokens and keys, just add them one line at a time. See for example other tokens such as one for accessing github or
the hackaday API. Other non-secret data like your timezone can also go here, just cause its called secrets doesn't
mean you can't have general customization data in there!

For the correct time zone string, look at http://worldtimeapi.org/timezones (https://adafru.it/EcP) and remember that if
your city is not listed, look for a city in the same time zone, for example Boston, New York, Philadelphia, Washington
DC, and Miami are all on the same time as New York.

Of course, don't share your secrets.py - keep that out of GitHub, Discord or other project-sharing sites.

Connect to WiFi

OK now you have your secrets setup - you can connect to the Internet using the ESP32SPI and the Requests modules.

First make sure you are running the latest version of Adafruit CircuitPython (https://adafru.it/Amd) for your board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find and install these
libraries from Adafruit's CircuitPython library bundle (https://adafru.it/zdx). Our introduction guide has a great page on
how to install the library bundle (https://adafru.it/ABU) for both express and non-express boards.

Remember for non-express boards like the, you'll need to manually install the necessary libraries from the bundle:

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 24 of 53

http://worldtimeapi.org/timezones
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries

adafruit_bus_device
adafruit_esp32_spi
adafruit_requests
neopixel

Before continuing make sure your board's lib folder or root filesystem has the above files copied over.

Next connect to the board's serial REPL (https://adafru.it/Awz) so you are at the CircuitPython >>> prompt.

Into your lib folder. Once that's done, load up the following example using Mu or your favorite editor:

import board
import busio
from digitalio import DigitalInOut
import adafruit_esp32spi.adafruit_esp32spi_socket as socket
from adafruit_esp32spi import adafruit_esp32spi
import adafruit_requests as requests

print("ESP32 SPI webclient test")

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"
JSON_URL = "http://api.coindesk.com/v1/bpi/currentprice/USD.json"

If you are using a board with pre-defined ESP32 Pins:
esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an ItsyBitsy Airlift:
esp32_cs = DigitalInOut(board.D13)
esp32_ready = DigitalInOut(board.D11)
esp32_reset = DigitalInOut(board.D12)

If you have an externally connected ESP32:
esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

requests.set_socket(socket, esp)

if esp.status == adafruit_esp32spi.WL_IDLE_STATUS:
 print("ESP32 found and in idle mode")
print("Firmware vers.", esp.firmware_version)
print("MAC addr:", [hex(i) for i in esp.MAC_address])

for ap in esp.scan_networks():
 print("\t%s\t\tRSSI: %d" % (str(ap["ssid"], "utf-8"), ap["rssi"]))

print("Connecting to AP...")
while not esp.is_connected:
 try:
 esp.connect_AP(b"MY_SSID_NAME", b"MY_SSID_PASSWORD")
 except RuntimeError as e:
 print("could not connect to AP, retrying: ", e)

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 25 of 53

https://learn.adafruit.com/welcome-to-circuitpython/the-repl

 print("could not connect to AP, retrying: ", e)
 continue
print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)
print("My IP address is", esp.pretty_ip(esp.ip_address))
print(
 "IP lookup adafruit.com: %s" % esp.pretty_ip(esp.get_host_by_name("adafruit.com"))
)
print("Ping google.com: %d ms" % esp.ping("google.com"))

esp._debug = True
print("Fetching text from", TEXT_URL)
r = requests.get(TEXT_URL)
print("-" * 40)
print(r.text)
print("-" * 40)
r.close()

print()
print("Fetching json from", JSON_URL)
r = requests.get(JSON_URL)
print("-" * 40)
print(r.json())
print("-" * 40)
r.close()

print("Done!")

And save it to your board, with the name code.py .

Then go down to this line

esp.connect_AP(b'MY_SSID_NAME', b'MY_SSID_PASSWORD')

and change MY_SSID_NAME and MY_SSID_PASSWORD to your access point name and password, keeping them

within the '' quotes. (This example doesn't use the secrets' file, but its also very stand-alone so if other things seem to
not work you can always re-load this. You should get something like the following:

You may need to change the esp32_cs, esp32_ready and esp32_reset pins in the code to match your
hardware's pinout.�

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 26 of 53

In order, the example code...

Initializes the ESP32 over SPI using the SPI port and 3 control pins:

esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

Tells our requests library the type of socket we're using (socket type varies by connectivity type - we'll be using the

adafruit_esp32spi_socket for this example). We'll also set the interface to an esp object. This is a little bit of a hack,

but it lets us use requests like CPython does.

requests.set_socket(socket, esp)

Verifies an ESP32 is found, checks the firmware and MAC address

if esp.status == adafruit_esp32spi.WL_IDLE_STATUS:
 print("ESP32 found and in idle mode")
print("Firmware vers.", esp.firmware_version)
print("MAC addr:", [hex(i) for i in esp.MAC_address])

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 27 of 53

Performs a scan of all access points it can see and prints out the name and signal strength:

for ap in esp.scan_networks():
 print("\t%s\t\tRSSI: %d" % (str(ap['ssid'], 'utf-8'), ap['rssi']))

Connects to the AP we've defined here, then prints out the local IP address, attempts to do a domain name lookup and
ping google.com to check network connectivity (note sometimes the ping fails or takes a while, this isn't a big deal)

 print("Connecting to AP...")
esp.connect_AP(b'MY_SSID_NAME', b'MY_SSID_PASSWORD')
print("Connected to", str(esp.ssid, 'utf-8'), "\tRSSI:", esp.rssi)
print("My IP address is", esp.pretty_ip(esp.ip_address))
print("IP lookup adafruit.com: %s" % esp.pretty_ip(esp.get_host_by_name("adafruit.com")))
print("Ping google.com: %d ms" % esp.ping("google.com"))

OK now we're getting to the really interesting part. With a SAMD51 or other large-RAM (well, over 32 KB) device, we can
do a lot of neat tricks. Like for example we can implement an interface a lot like requests (https://adafru.it/E9o) - which
makes getting data really really easy

To read in all the text from a web URL call requests.get - you can pass in https URLs for SSL connectivity

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"
print("Fetching text from", TEXT_URL)
r = requests.get(TEXT_URL)
print('-'*40)
print(r.text)
print('-'*40)
r.close()

Or, if the data is in structured JSON, you can get the json pre-parsed into a Python dictionary that can be easily queried
or traversed. (Again, only for nRF52840, M4 and other high-RAM boards)

JSON_URL = "http://api.coindesk.com/v1/bpi/currentprice/USD.json"
print("Fetching json from", JSON_URL)
r = requests.get(JSON_URL)
print('-'*40)
print(r.json())
print('-'*40)
r.close()

Requests

We've written a requests-like (https://adafru.it/FpT) library for web interfacing
named Adafruit_CircuitPython_Requests (https://adafru.it/FpW). This library allows you to send HTTP/1.1 requests
without "crafting" them and provides helpful methods for parsing the response from the server.

Here's an example of using Requests to perform GET and POST requests to a server.

adafruit_requests usage with an esp32spi_socket
import board
import busio

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 28 of 53

http://docs.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://github.com/adafruit/Adafruit_CircuitPython_Requests

import busio
from digitalio import DigitalInOut
import adafruit_esp32spi.adafruit_esp32spi_socket as socket
from adafruit_esp32spi import adafruit_esp32spi
import adafruit_requests as requests

If you are using a board with pre-defined ESP32 Pins:
esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:
esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")
while not esp.is_connected:
 try:
 esp.connect_AP(b"MY_SSID_NAME", b"MY_SSID_PASSWORD")
 except RuntimeError as e:
 print("could not connect to AP, retrying: ", e)
 continue
print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface
requests.set_socket(socket, esp)

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"
JSON_GET_URL = "http://httpbin.org/get"
JSON_POST_URL = "http://httpbin.org/post"

print("Fetching text from %s" % TEXT_URL)
response = requests.get(TEXT_URL)
print("-" * 40)

print("Text Response: ", response.text)
print("-" * 40)
response.close()

print("Fetching JSON data from %s" % JSON_GET_URL)
response = requests.get(JSON_GET_URL)
print("-" * 40)

print("JSON Response: ", response.json())
print("-" * 40)
response.close()

data = "31F"
print("POSTing data to {0}: {1}".format(JSON_POST_URL, data))
response = requests.post(JSON_POST_URL, data=data)
print("-" * 40)

json_resp = response.json()
Parse out the 'data' key from json_resp dict.
print("Data received from server:", json_resp["data"])
print("-" * 40)
response.close()

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 29 of 53

response.close()

json_data = {"Date": "July 25, 2019"}
print("POSTing data to {0}: {1}".format(JSON_POST_URL, json_data))
response = requests.post(JSON_POST_URL, json=json_data)
print("-" * 40)

json_resp = response.json()
Parse out the 'json' key from json_resp dict.
print("JSON Data received from server:", json_resp["json"])
print("-" * 40)
response.close()

The code first sets up the ESP32SPI interface. Then, it initializes a request object using an ESP32 socket and the

esp object.

import board
import busio
from digitalio import DigitalInOut
import adafruit_esp32spi.adafruit_esp32spi_socket as socket
from adafruit_esp32spi import adafruit_esp32spi
import adafruit_requests as requests

If you have an externally connected ESP32:
esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")
while not esp.is_connected:
 try:
 esp.connect_AP(b'MY_SSID_NAME', b'MY_SSID_PASSWORD')
 except RuntimeError as e:
 print("could not connect to AP, retrying: ",e)
 continue
print("Connected to", str(esp.ssid, 'utf-8'), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface
requests.set_socket(socket, esp)

Make sure to set the ESP32 pinout to match your AirLift breakout's connection:

esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

HTTP GET with Requests

The code makes a HTTP GET request to Adafruit's WiFi testing website
- http://wifitest.adafruit.com/testwifi/index.html (https://adafru.it/FpZ).

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 30 of 53

http://wifitest.adafruit.com/testwifi/index.html

To do this, we'll pass the URL into requests.get() . We're also going to save the response from the server into a

variable named response .

While we requested data from the server, we'd what the server responded with. Since we already saved the
server's response , we can read it back. Luckily for us, requests automatically decodes the server's response into

human-readable text, you can read it back by calling response.text .

Lastly, we'll perform a bit of cleanup by calling response.close() . This closes, deletes, and collect's the response's

data.

 print("Fetching text from %s"%TEXT_URL)
response = requests.get(TEXT_URL)
print('-'*40)

print("Text Response: ", response.text)
print('-'*40)
response.close()

While some servers respond with text, some respond with json-formatted data consisting of attribute–value pairs.

CircuitPython_Requests can convert a JSON-formatted response from a server into a CPython dict. object.

We can also fetch and parse json data. We'll send a HTTP get to a url we know returns a json-formatted response
(instead of text data).

Then, the code calls response.json() to convert the response to a CPython dict .

 print("Fetching JSON data from %s"%JSON_GET_URL)
response = requests.get(JSON_GET_URL)
print('-'*40)

print("JSON Response: ", response.json())
print('-'*40)
response.close()

HTTP POST with Requests

Requests can also POST data to a server by calling the requests.post method, passing it a data value.

data = '31F'
print("POSTing data to {0}: {1}".format(JSON_POST_URL, data))
response = requests.post(JSON_POST_URL, data=data)
print('-'*40)

json_resp = response.json()
Parse out the 'data' key from json_resp dict.
print("Data received from server:", json_resp['data'])
print('-'*40)
response.close()

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 31 of 53

You can also post json-formatted data to a server by passing json data into the requests.post method.

json_data = {"Date" : "July 25, 2019"}
print("POSTing data to {0}: {1}".format(JSON_POST_URL, json_data))
response = requests.post(JSON_POST_URL, json=json_data)
print('-'*40)

json_resp = response.json()
Parse out the 'json' key from json_resp dict.
print("JSON Data received from server:", json_resp['json'])
print('-'*40)
response.close()

Advanced Requests Usage

Want to send custom HTTP headers, parse the response as raw bytes, or handle a response's http status code in your
CircuitPython code?

We've written an example to show advanced usage of the requests module below.

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 32 of 53

import board
import busio
from digitalio import DigitalInOut
import adafruit_esp32spi.adafruit_esp32spi_socket as socket
from adafruit_esp32spi import adafruit_esp32spi
import adafruit_requests as requests

If you are using a board with pre-defined ESP32 Pins:
esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:
esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")
while not esp.is_connected:
 try:
 esp.connect_AP(b"MY_SSID_NAME", b"MY_SSID_PASSWORD")
 except RuntimeError as e:
 print("could not connect to AP, retrying: ", e)
 continue
print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface
requests.set_socket(socket, esp)

JSON_GET_URL = "http://httpbin.org/get"

Define a custom header as a dict.
headers = {"user-agent": "blinka/1.0.0"}

print("Fetching JSON data from %s..." % JSON_GET_URL)
response = requests.get(JSON_GET_URL, headers=headers)
print("-" * 60)

json_data = response.json()
headers = json_data["headers"]
print("Response's Custom User-Agent Header: {0}".format(headers["User-Agent"]))
print("-" * 60)

Read Response's HTTP status code
print("Response HTTP Status Code: ", response.status_code)
print("-" * 60)

Read Response, as raw bytes instead of pretty text
print("Raw Response: ", response.content)

Close, delete and collect the response data
response.close()

WiFi Manager

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 33 of 53

That simpletest example works but its a little finicky - you need to constantly check WiFi status and have many loops to
manage connections and disconnections. For more advanced uses, we recommend using the WiFiManager object. It
will wrap the connection/status/requests loop for you - reconnecting if WiFi drops, resetting the ESP32 if it gets into a
bad state, etc.

Here's a more advanced example that shows the WiFi manager and also how to POST data with some extra headers:

import time
import board
import busio
from digitalio import DigitalInOut
import neopixel
from adafruit_esp32spi import adafruit_esp32spi
from adafruit_esp32spi import adafruit_esp32spi_wifimanager

print("ESP32 SPI webclient test")

Get wifi details and more from a secrets.py file
try:
 from secrets import secrets
except ImportError:
 print("WiFi secrets are kept in secrets.py, please add them there!")
 raise

If you are using a board with pre-defined ESP32 Pins:
esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:
esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)
"""Use below for Most Boards"""
status_light = neopixel.NeoPixel(
 board.NEOPIXEL, 1, brightness=0.2
) # Uncomment for Most Boards
"""Uncomment below for ItsyBitsy M4"""
status_light = dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1, brightness=0.2)
Uncomment below for an externally defined RGB LED
import adafruit_rgbled
from adafruit_esp32spi import PWMOut
RED_LED = PWMOut.PWMOut(esp, 26)
GREEN_LED = PWMOut.PWMOut(esp, 27)
BLUE_LED = PWMOut.PWMOut(esp, 25)
status_light = adafruit_rgbled.RGBLED(RED_LED, BLUE_LED, GREEN_LED)
wifi = adafruit_esp32spi_wifimanager.ESPSPI_WiFiManager(esp, secrets, status_light)

counter = 0

while True:
 try:
 print("Posting data...", end="")
 data = counter
 feed = "test"

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 34 of 53

 feed = "test"
 payload = {"value": data}
 response = wifi.post(
 "https://io.adafruit.com/api/v2/"
 + secrets["aio_username"]
 + "/feeds/"
 + feed
 + "/data",
 json=payload,
 headers={"X-AIO-KEY": secrets["aio_key"]},
)
 print(response.json())
 response.close()
 counter = counter + 1
 print("OK")
 except (ValueError, RuntimeError) as e:
 print("Failed to get data, retrying\n", e)
 wifi.reset()
 continue
 response = None
 time.sleep(15)

You'll note here we use a secrets.py file to manage our SSID info. The wifimanager is given the ESP32 object, secrets
and a neopixel for status indication.

Note, you'll need to add a some additional information to your secrets file so that the code can query the Adafruit IO
API:

aio_username
aio_key

You can go to your adafruit.io View AIO Key link to get those two values and add them to the secrets file, which will
now look something like this:

This file is where you keep secret settings, passwords, and tokens!
If you put them in the code you risk committing that info or sharing it

secrets = {
 'ssid' : '_your_ssid_',
 'password' : '_your_wifi_password_',
 'timezone' : "America/Los_Angeles", # http://worldtimeapi.org/timezones
 'aio_username' : '_your_aio_username_',
 'aio_key' : '_your_aio_key_',
 }

Next, set up an Adafruit IO feed named test

If you do not know how to set up a feed, follow this page and come back when you've set up a feed named
test . (https://adafru.it/f5k)

We can then have a simple loop for posting data to Adafruit IO without having to deal with connecting or initializing the
hardware!

Take a look at your test feed on Adafruit.io and you'll see the value increase each time the CircuitPython board posts
data to it!

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 35 of 53

https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 36 of 53

Arduino

You can use an AirLift with Arduino. Unlike CircuitPython, it work work with just about any Arduino board, even a classic
Arduino UNO. However, if you want to use libraries like Adafruit IO Arduino, ArduinoJSON, or add sensors and SD
card, you'll really want an ATSAMD21 (Cortex M0) or ATSAMD51 (Cortex M4), both of which have plenty or RAM.

Library Install

We're using a variant of the Arduino WiFiNINA library, which is amazing and written by the Arduino team! The official
WiFi101 library won't work because it doesn't support the ability to change the pins.

So! We made a fork that you can install.

Click here to download the library:

https://adafru.it/Evm

https://adafru.it/Evm

Within the Arduino IDE, select Sketch->Include Library -> Add .ZIP library...

And select the zip you just downloaded.

First Test

OK now you have it wired and library installed, time to test it out!

Lets start by scanning the local networks. Load up the ScanNetworks example

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 37 of 53

https://github.com/adafruit/WiFiNINA/archive/master.zip

 (https://adafru.it/EVu)

At the top you'll see a section where the GPIO pins are defined

 (https://adafru.it/EVv)

If you don't see this, you may have the wrong WiFiNINA library installed. Uninstall it and re-install the Adafruit one as
above.

Arduino Microcontroller Pin Definition

Next, you'll need to need to modify the pin definition above for the AirLift Shield. Replace the configuration in the
sketch with the pinouts below:

#define SPIWIFI SPI // The SPI port
#define SPIWIFI_SS 10 // Chip select pin
#define ESP32_RESETN 5 // Reset pin
#define SPIWIFI_ACK 7 // a.k.a BUSY or READY pin
#define ESP32_GPIO0 6

Compile and upload to your board wired up to the AirLift

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 38 of 53

 (https://adafru.it/EVw)

If you don't even get the MAC address printed out, check your wiring.

If you get the MAC address but cannot scan any networks, check your power supply. You need a solid 3-5VDC
into Vin in order for the ESP32 not to brown out.

WiFi Connection Test

Now that you have your wiring checked, time to connect to the Internet!

Open up the WiFiWebClient example

 (https://adafru.it/EVx)

Open up the secondary tab, arduino_secrets.h. This is where you will store private data like the SSID/password to your

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 39 of 53

network.

 (https://adafru.it/EVy)

You must change these string values before updating to your board!

After you've set it correctly, upload and check the serial monitor. You should see the following. If not, go back, check
wiring, power and your SSID/password

 (https://adafru.it/EVz)

Secure Connection Example

Many servers today do not allow non-SSL connectivity. Lucky for you the ESP32 has a great TLS/SSL stack so you can
have that all taken care of for you. Here's an example of a secure WiFi connection:

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 40 of 53

 (https://adafru.it/EVA)

Note we use WiFiSSLClient client; instead of WiFiClient client; to require an SSL connection!

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 41 of 53

 (https://adafru.it/EVB)

JSON Parsing Example

This example is a little more advanced - many sites will have API's that give you JSON data. We'll
use ArduinoJSON (https://adafru.it/Evn) to convert that to a format we can use and then display that data on the serial
port (which can then be re-directed to a display of some sort)

First up, use the Library manager to install ArduinoJSON (https://adafru.it/Evo).

Then load the example JSONdemo

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 42 of 53

https://arduinojson.org/
https://arduinojson.org/v6/doc/installation/

 (https://adafru.it/EVC)

By default it will connect to to the Twitter banner image API, parse the username and followers and display them.

 (https://adafru.it/EVD)

Adapting Other Examples

Once you've got it connecting to the Internet you can check out the other examples. The only change you'll want to
make is at the top of the sketches, add:

#define SPIWIFI SPI // The SPI port
#define SPIWIFI_SS 10 // Chip select pin
#define ESP32_RESETN 5 // Reset pin
#define SPIWIFI_ACK 7 // a.k.a BUSY or READY pin
#define ESP32_GPIO0 6

And then before you check the status() of the module, call the function WiFi.setPins(SPIWIFI_SS, SPIWIFI_ACK,
ESP32_RESETN, ESP32_GPIO0, &SPIWIFI); like so:

// check for the WiFi module:
 WiFi.setPins(SPIWIFI_SS, SPIWIFI_ACK, ESP32_RESETN, ESP32_GPIO0, &SPIWIFI);
 while (WiFi.status() == WL_NO_MODULE) {
 Serial.println("Communication with WiFi module failed!");
 // don't continue
 delay(1000);
 }

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 43 of 53

Upgrade External ESP32 Airlift Firmware

Bridging the ESP32's Optional Control Pins

External AirLift boards have three optional ESP32 control pins which are not connected by default:

ESPGPIO0
ESPRX
ESPTX

Before continuing the steps on this page - you will need to add solder bridges on the ESPTX, EXPRX and GPIO0 pads
on the bottom of breakout.

Uploading Serial Passthrough Code for Feather M4 or ItsyBitsy M4

First, back up any code and files you have on your CIRCUITPY drive. It will be overwritten by the code you're going to
upload to your board. You should not end up losing any files on the QSPI flash, but it's a good idea to back them up
anyways.

Download the UF2 for your board to your Desktop.

https://adafru.it/IEK

https://adafru.it/IEK

Find the reset button on your board. It's a small, black button, and on most of the boards, it will be the only button
available.

Make sure you solder all three of these pads together. You will not be able to upload firmware to your ESP32
if they are not connected.�

This section is only for an AirLift FeatherWing with a Feather M4, or an AirLift BitsyWing with an ItsyBitsy M4. If
you are using a different hardware combination - use the "Code - Arduino Passthrough" section instead.�

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 44 of 53

https://github.com/adafruit/Adafruit_Learning_System_Guides/raw/master/Adafruit_ESP32_Arduino_Demos/SerialESPPassthrough/Airlift-BitsyWing-FeatherWing-Passthru.UF2

Tap this button twice to enter the bootloader. If it doesn't work on the first try, don't be discouraged. The rhythm of the
taps needs to be correct and sometimes it takes a few tries.

Once successful, the RGB LED on the board will flash red and then stay green. A new drive will show up on your
computer. The drive will be called boardnameBOOT where boardname is a reference to your specific board. For

example, a Feather will have FEATHERBOOT and a Trinket will have TRINKETBOOT etc. Going forward we'll just call

the boot drive BOOT

The board is now in bootloader mode. Now find the UF2 file you downloaded. Drag that file to the BOOT drive on your

computer in your operating system file manager/finder.

The lights should flash again, BOOT will disappear. Your board should re-enumerate USB and appear as a COM or

Serial port on your computer. Make a note of the serial port by checking the Device Manager (Windows) or typing ls
/dev/cu* or /dev/tty* (Mac or Linux) in a terminal.

If your board is listed in the terminal, proceed to the Uploading nina-fw with esptool section of this guide.

Code - Arduino Passthrough

With the ESP32's optional control pins soldered together, you'll be turning your Airlift breakout, shield, or wing into a

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 45 of 53

USB to Serial converter. To do this, you'll need a special Arduino sketch named SerialESPPassthrough.ino.

Click Download: Project ZIP to download the code below.

/*
 SerialNINAPassthrough - Use esptool to flash the ESP32 module
 For use with PyPortal, Metro M4 WiFi...

 Copyright (c) 2018 Arduino SA. All rights reserved.

 This library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.

 You should have received a copy of the GNU Lesser General Public
 License along with this library; if not, write to the Free Software
 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/

#include <Adafruit_NeoPixel.h>

unsigned long baud = 115200;

#if defined(ADAFRUIT_FEATHER_M4_EXPRESS) || \
 defined(ADAFRUIT_FEATHER_M0_EXPRESS) || \
 defined(ARDUINO_AVR_FEATHER32U4) || \
 defined(ARDUINO_NRF52840_FEATHER) || \
 defined(ADAFRUIT_ITSYBITSY_M0_EXPRESS) || \
 defined(ADAFRUIT_ITSYBITSY_M4_EXPRESS) || \
 defined(ARDUINO_AVR_ITSYBITSY32U4_3V)
 // Configure the pins used for the ESP32 connection
 #define SerialESP32 Serial1
 #define SPIWIFI SPI // The SPI port
 #define SPIWIFI_SS 13 // Chip select pin
 #define ESP32_RESETN 12 // Reset pin
 #define SPIWIFI_ACK 11 // a.k.a BUSY or READY pin
 #define ESP32_GPIO0 10
 #define NEOPIXEL_PIN 8
#elif defined(ARDUINO_AVR_FEATHER328P)
 #define SerialESP32 Serial1
 #define SPIWIFI SPI // The SPI port
 #define SPIWIFI_SS 4 // Chip select pin
 #define ESP32_RESETN 3 // Reset pin
 #define SPIWIFI_ACK 2 // a.k.a BUSY or READY pin
 #define ESP32_GPIO0 -1
 #define NEOPIXEL_PIN 8
#elif defined(TEENSYDUINO)
 #define SerialESP32 Serial1
 #define SPIWIFI SPI // The SPI port
 #define SPIWIFI_SS 5 // Chip select pin
 #define ESP32_RESETN 6 // Reset pin
 #define SPIWIFI_ACK 9 // a.k.a BUSY or READY pin
 #define ESP32_GPIO0 -1

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 46 of 53

 #define ESP32_GPIO0 -1
 #define NEOPIXEL_PIN 8
#elif defined(ARDUINO_NRF52832_FEATHER)
 #define SerialESP32 Serial1
 #define SPIWIFI SPI // The SPI port
 #define SPIWIFI_SS 16 // Chip select pin
 #define ESP32_RESETN 15 // Reset pin
 #define SPIWIFI_ACK 7 // a.k.a BUSY or READY pin
 #define ESP32_GPIO0 -1
 #define NEOPIXEL_PIN 8
#elif !defined(SPIWIFI_SS) // if the wifi definition isnt in the board variant
 // Don't change the names of these #define's! they match the variant ones
 #define SerialESP32 Serial1
 #define SPIWIFI SPI
 #define SPIWIFI_SS 10 // Chip select pin
 #define SPIWIFI_ACK 7 // a.k.a BUSY or READY pin
 #define ESP32_RESETN 5 // Reset pin
 #define ESP32_GPIO0 -1 // Not connected
 #define NEOPIXEL_PIN 8
#endif

Adafruit_NeoPixel pixel = Adafruit_NeoPixel(1, NEOPIXEL_PIN, NEO_GRB + NEO_KHZ800);

void setup() {
 Serial.begin(baud);
 pixel.begin();
 pixel.setPixelColor(0, 10, 10, 10); pixel.show();

 while (!Serial);
 pixel.setPixelColor(0, 50, 50, 50); pixel.show();

 delay(100);
 SerialESP32.begin(baud);

 pinMode(SPIWIFI_SS, OUTPUT);
 pinMode(ESP32_GPIO0, OUTPUT);
 pinMode(ESP32_RESETN, OUTPUT);

 // manually put the ESP32 in upload mode
 digitalWrite(ESP32_GPIO0, LOW);

 digitalWrite(ESP32_RESETN, LOW);
 delay(100);
 digitalWrite(ESP32_RESETN, HIGH);
 pixel.setPixelColor(0, 20, 20, 0); pixel.show();
 delay(100);
}

void loop() {
 while (Serial.available()) {
 pixel.setPixelColor(0, 10, 0, 0); pixel.show();
 SerialESP32.write(Serial.read());
 }

 while (SerialESP32.available()) {
 pixel.setPixelColor(0, 0, 0, 10); pixel.show();
 Serial.write(SerialESP32.read());
 }
}

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 47 of 53

Code Usage

Unzip the file, and open the SerialESPPassthrough.ino file in the Arduino IDE.

If you're using the AirLift FeatherWing, AirLift Shield or AirLift Bitsy Add-On, use the PassThrough UF2 instructions
above

If you have an AirLift Breakout (or are manually wiring up any of the boards above), change the following pin definitions
in the sketch to match your wiring:

#elif !defined(SPIWIFI_SS) // if the wifi definition isnt in the board variant
 // Don't change the names of these #define's! they match the variant ones
 #define SerialESP32 Serial1
 #define SPIWIFI SPI
 #define SPIWIFI_SS 10 // Chip select pin
 #define SPIWIFI_ACK 7 // a.k.a BUSY or READY pin
 #define ESP32_RESETN 5 // Reset pin
 #define ESP32_GPIO0 -1 // Not connected
 #define NEOPIXEL_PIN 8
#endif

Using the Arduino IDE, upload the code to your board (Sketch->Upload).

After uploading, the board should enumerate USB and appear as a COM or Serial port on your computer.

Make a note of the serial port by checking the Device Manager (Windows) or typing in ls /dev/cu* or /dev/tty* (Mac

or Linux) in a terminal

Burning nina-fw with esptool

Click the link below to download the latest nina-fw .bin file. Unzip it and save the .bin file to your desktop.

https://adafru.it/G3D

https://adafru.it/G3D

If you're using macOS or Linux - run the following command, replacing /dev/ttys6 with the serial port of your board

and NINA_W102-1.6.0 with the binary file you're flashing to the ESP32.

esptool.py --port /dev/ttyS6 --before no_reset --baud 115200 write_flash 0 NINA_W102-1.6.0.bin

If you're using Windows - run the following command, replacing COM7 with the serial port of your board

and NINA_W102-1.6.0 with the binary file you're flashing to the ESP32

This section assumes you know how to use 'esptool' to upload firmware to your ESP! If you're not sure, check
https://github.com/espressif/esptool and look for tutorials.�

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 48 of 53

https://github.com/espressif/esptool
https://github.com/adafruit/nina-fw/releases/latest

esptool.py --port COM7 --before no_reset --baud 115200 write_flash 0 NINA_W102-1.6.0.bin

The command should detect the ESP32 and will take a minute or two to upload the firmware.

If ESPTool doesn't detect the ESP32, make sure you've uploaded the correct .UF2 file to the bootloader and are using
the correct serial port.

Once the firmware is fully uploaded, the ESP32 will reset.

Verifying the Upgraded Firmware Version

To verify everything is working correctly, we'll load up either an Arduino sketch or CircuitPython code. At this point, you
may also want desolder the connections between the Optional ESP32 control pins you made earlier using a solder
sucker (https://adafru.it/FWk) or a bit of solder wick (https://adafru.it/yrC).

Arduino

If you were previously using your ESP32 with Arduino, you should load up an Arduino sketch to verify everything is
working properly and the version of the nina-fw correlates with the version the sketch reads.

Open up File->Examples->WiFiNINA->ScanNetworks and upload the sketch. Then, open the Serial Monitor. You should
see the firmware version printed out to the serial monitor.

CircuitPython

If you were previously using your ESP32 project with CircuitPython, you'll need to first reinstall CircuitPython firmware
(UF2) for your board. The QSPI flash should have retained its contents. If you don't see anything on the CIRCUITPY

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 49 of 53

https://www.adafruit.com/product/148
https://www.adafruit.com/product/149

volume, copy files from the backup you made earlier to CIRCUITPY .

To verify the new ESP32 WiFi firmware version is correct, follow the Connect to WiFi step in this
guide (https://adafru.it/Eao) and come back here when you've successfully ran the code. The REPL output should
display the firmware version you flashed.

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 50 of 53

https://learn.adafruit.com/adafruit-pyportal/internet-connect#connect-to-wifi-17-4

Downloads

Files

ESP32 WROOM32 Datasheet (https://adafru.it/EVE)
EagleCAD files on GitHub (https://adafru.it/F6p)
Fritzing object in Adafruit Fritzing Library (https://adafru.it/F6q)

Schematic

Fab Print

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 51 of 53

https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://github.com/adafruit/Adafruit-Airlift-Shield-PCB
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20Airlift%20Shield.fzpz

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 52 of 53

© Adafruit Industries Last Updated: 2020-05-05 10:40:42 AM EDT Page 53 of 53

	Guide Contents
	Overview
	Pinouts
	Power Pins
	SPI Interface Pins
	ESP32 Control Pins
	SD Card Interface
	LEDs
	Prototyping Area

	Assembly
	Installing Standard Headers
	Stack Alert!

	CircuitPython
	CircuitPython Microcontroller Pinout

	CircuitPython Installation of ESP32SPI Library
	CircuitPython Usage

	Internet Connect!
	What's a secrets file?
	Connect to WiFi
	Requests
	HTTP GET with Requests
	HTTP POST with Requests
	Advanced Requests Usage

	WiFi Manager
	Arduino
	Library Install
	First Test
	Arduino Microcontroller Pin Definition

	WiFi Connection Test
	Secure Connection Example
	JSON Parsing Example
	Adapting Other Examples

	Upgrade External ESP32 Airlift Firmware
	Bridging the ESP32's Optional Control Pins
	Uploading Serial Passthrough Code for Feather M4 or ItsyBitsy M4

	Code - Arduino Passthrough
	Code Usage
	Burning nina-fw with esptool
	Verifying the Upgraded Firmware Version
	Arduino
	CircuitPython

	Downloads
	Files
	Schematic
	Fab Print

