
Pixie - the 3W Chainable LED Pixel
Created by lady ada

Last updated on 2019-11-15 07:34:28 PM UTC

Overview

NeoPixels are plenty bright, suuuure. BUT ARE THEY 3 WATTS BRIGHT? No! They are not! That's why you need a
Pixie. These chainable smart LEDs are not only super-smart, they are ridonkulously bright with 3W total, compared to
0.2W of a 'standard' NeoPixel. Designed by Ytai Ben-Tsvi, these are the ultimate in LEDs.

Each Pixie not only contains that aforementioned 3W LED, it also has a Microchip PIC microcontroller. You send it the
color you want to appear at standard 115200 baud (1 byte per color). You can send a longer string of pixel data and it
will 'forward' along the messages so you can chain them like a shift register. You only have to send the data once per
color change. Once set, the microcontroller does all the PWM handling for you.

© Adafruit Industries https://learn.adafruit.com/pixie-3-watt-smart-chainable-led-pixels Page 3 of 29

You do have to send it data every 1 second at a minimum (as a protection against the bright and hot LEDs staying
'stuck on', they will eventually timeout if no updates are received)

Since the Pixie uses so much power, there's a risk of the LED heating up so much it damages itself and/or the
microcontroller. That's why Ytai added a temperature cut-off. When the PIC detects that the Pixie's temperature is too
high, it turns off the LED until it gets back down to a reasonable level.

Each Pixie comes fully assembled, with big pads for power wires (don't forget, we're talking about max 1 Amp per Pixie!)

© Adafruit Industries https://learn.adafruit.com/pixie-3-watt-smart-chainable-led-pixels Page 4 of 29

and mounting holes on the sides. You'll also need thick wires to power each Pixie and a microcontroller that can send
115,200 baud 8N1 data to the Pixie (on its own, it will not do anything, you must send it data for it to light up)

Our Arduino library is easy to use, has the same API you're used to with our NeoPixel library, and will get you blasting
ROYGBIV in 5 minutes or less.

© Adafruit Industries https://learn.adafruit.com/pixie-3-watt-smart-chainable-led-pixels Page 5 of 29

Pinouts

Pixie has two 'ports' - one for input and one for output. Both input and output ports have power pins:

+ Power - This is the positive power and logic pin for the Pixie. Power with 5VDC.
- Ground - This is the ground reference for power and logic pin for the Pixie. Connect to power ground on your
power supply as well as the ground of your microcontroller.

Both power pads have a 0.07" / 1.8mm diameter hole, so you can use very thick wires for connecting (16AWG is

© Adafruit Industries https://learn.adafruit.com/pixie-3-watt-smart-chainable-led-pixels Page 6 of 29

recommended). That's good because remember that you can draw up to 1A per Pixie when the LED is full white.

You also have an in and out pin. Each are 5V logic in and out, and receive/transmit data at 115200 baud.

All the pins are aligned to a 0.1" grid, so you can solder standard headers to them and use the Pixie on a breadboard
or a perf-board.

The mounting holes on both sides are sized to fit M2 hardware.

© Adafruit Industries https://learn.adafruit.com/pixie-3-watt-smart-chainable-led-pixels Page 7 of 29

Design

The Pixie was designed by Ytai Ben-Tsvi, who joins us below with "how he did it"

Don't forget to read the whole thing for a bonus photo at the end!

Take it away, Ytai!

Overview

While having a fairly simple functionality, the Pixie design has more than meet the eye. In contrast to its low-power
relatives, the NeoPixels, switching current to a chain of 3W LEDs creates some interesting engineering challenges,
which took a few iterations to get right. Here’s what we’ve learned and how we’ve approached some of the interesting
problems.

Microcontroller

Fairly early down the design path, it became clear that implementing all the features we wanted is a task most suited
for a small microcontroller. We chose the 8-bit Microchip PIC12F1571, which had just about everything we could hope
for in this application. It is small and cheap, works on 5V, has exactly 5 I/O pins (used for R, G, B, Din, Dout), an internal
oscillator, a 16-bit, 3 channel PWM module, on-die temperature sensor and more. Pretty amazing!

Programming the PIC12 is done through exposed pads featured on the circuit for that purpose (labeled rst/pgd/pgc). A
cheap PIC programmer can be used, but the programming protocol is so simple that we’ve implemented an Arduino
library that can do that for our testbed.

The possibilities with having an on-board microcontroller are endless! The Pixie can be reprogrammed for standalone
operation, and the Din/Dout pins can be repurposed to support different protocols or to directly connect to buttons,
etc. The Dout pin can even be used for analog input!

The exiting firmware can be found in Pixie's Github repository. (https://adafru.it/iNF)

Constant Current Driver

In order to provide a consistent level of illumination each of the R, G, B LEDs needs a constant current supply of about
350mA. We opted for linear regulation for its simplicity and low-cost, despite it being less efficient (and as such,
dissipating more heat) than switching regulation.

The constant current circuit is pretty cool. Let’s explain it by first considering the path of the current through the LED.
The current comes from the 5V supply, through the LED, then through a nFET (Q1/3/5) then through a 1.74[Ohm] shunt
resistor. The more resistive the FET becomes between its drain and source, the smaller the current flowing through

© Adafruit Industries https://learn.adafruit.com/pixie-3-watt-smart-chainable-led-pixels Page 8 of 29

https://github.com/ytai/pixie

this path. Now let’s see how we can use this to our advantage.

The NPN transistors Q2/4/6 have a specified 0.6V drop between base and emitter when on. This means the voltage
across their respective shunt resistors R1/3/5 will always be 0.6V. According to Ohm’s law, this means that the current
through them will be 0.6[V]/1.74[Ohm], or about 344mA. Close enough. If the current were to decrease, the base
voltage would decrease proportionally, resulting in the NPN having more resistance between its collector and emitter,
thus causing a higher voltage on the collector (recognize the voltage divider formed between the NPNs and their
R2/4/6 pull-ups?). But this would result in a higher voltage on the FET gate, causing it to become less resistive between
source and drain and as a result, higher current through the LED. The same logic can be applied in the opposite
direction. The conclusion is that this circuit is self-regulating the LED current.

Color and Brightness Control

Different colors are achieved via Pulse Width Modulation (PWM) on each of the R, G, B LED. The PIC has a built-in 3-
channel, 16-bit PWM peripheral. This allows us to be fancy and do Gamma correction, which means we are doing a
non-linear mapping of the 8-bit color value we are commanded with to a high resolution 16-bit color, resulting in a
much more natural color gradient compared to a straight linear mapping. The PWM peripheral runs at about 500Hz.
The generated signals switch the constant-current circuit described above.

Daisy-Chaining

Originally, we have designed the Pixie to support the same serial protocol as the WS28x family (aka NeoPixel). It
worked. However, this compatibility, which was originally considered a feature has been eventually deemed a
drawback: the WS28x protocol doesn’t easily lend itself to common micro controller peripherals, and in most cases
ends up being bit-banged by the controller, requiring a relative high CPU usage, making it hard to do other timing-
sensitive operations at the same time, not to mention driving another chain on a different pin… Our solution: stick to the
good ol’ 115k.2 asynchronous serial. Almost every microcontroller has a UART peripheral capable of easily generating
this protocol without much CPU intervention. Many have more than one. Even a PC with a simple USB-serial dongle
can do that fairly easily. Seems like a win! The only drawback we could see what with the data rate being relatively
low, we run into frame-rate / chain length limitations (about 60-long chain @ 50 frames/sec). However, at about 1[A] per

© Adafruit Industries https://learn.adafruit.com/pixie-3-watt-smart-chainable-led-pixels Page 9 of 29

Pixie, we concluded that typical chains would not be super-long.

The resulting serial protocol is very simple: the controllers sends a byte-string containing a color value for each LED in
the chain as follows:

<R1>, <G1>, <B1>, <R2>, <G2>, <B2>, <R3>, <G3>, <B3>, …, <Rn>, <Gn>, <Bn>, <at least 1ms of silence>

Each of <Xi> is a byte representing the brightness of a single color of a single Pixie, where 0 is off, 255 is fully on,

and everything is between is, er, everything in between. <R1>, <G1>, <B1> will determine the color of the Pixie that

is the first in the chain, counting from the controller end. <R2>, <G2>, <B2> is the next one, etc.

Each Pixie listens on it Din pin for serial data. It will consume the first 3 bytes it sees and store them. It will then echo
any subsequent bytes to its Dout pin (with less than a microsecond latency). It will keep doing so until it detects a 1ms-
long silence on Din. Then, it will immediately apply (latch) the color values it got and go back to listening for a new
color. This yield a very effective mechanism for addressing LEDs individually and making sure they all latch at the same
time.

Dealing With Supply Noise

Having a chain with multiple nodes constantly switching 1[A] loads is no small feat! Even an otherwise negligible wire
resistance would result in noticeable voltage glitches. Not to mention wire inductance, which likes sudden current
changes even less, and reacts with furious voltage surges unless dealt with. To make things worse, being a chain-
oriented product, we’re expecting people to use rather long (several meters) wires, which inevitably have more
resistance and inductance. And worse still, the on-chip temperature indicator that we really really wanted to use is
extremely sensitive to the slightest of noise on the supply. Did we get your attention?

We took several measure to mitigate those issues. First, we made sure the holes for the supply wires are large enough
to fit a 16AWG wire. Thicker wires = less resistive = good. The PCB traces connecting the input and output supply are
super wide for the same reason.

Then, bulk capacitance! A large 22uF ceramic (hence, low ESR) capacitor across the supply on every node is used to
absorb voltage transients, especially those caused by wire inductance. Then, that supply gets further filtered using an
R/C circuit comprising R7, R9 and C1, the latter being yet another 22uF ceramic and the relatively high resistor values
ensure that the C1 reacts very slowly to any change in the supply voltage. One thing to notice is that we’ve used to
resistors and we let the capacitor “float” in the middle. Why? Assuming fairly equal wires for 5V and GND, this setup
would result in the supply rails for all microcontrollers in the chain to always have the same Vcc/2 potential, even if
their Vcc voltage is different as result of wire resistance x high current. This makes it easier to discern the 0’s from the
1’s between consecutive nodes and thus get a reliable communication channel despite the supply noise. Otherwise,
since the detection threshold is relative to the supply rails, we would have smaller error margins.

That simple circuit took a lot of tweaking to get right, but the result is very satisfactory noise-immunity characteristics.

© Adafruit Industries https://learn.adafruit.com/pixie-3-watt-smart-chainable-led-pixels Page 10 of 29

Power Dissipation and Over-Temperature Protection

Despite LEDs being relatively efficient light sources, they still convert the vast majority of their consumed power into
heat. Furthermore, our linear constant current circuit uses resistance (across the FET) to limit the current, resulting in
the extra power being converted to heat. In total, at full steam (driving all 3 LEDs at 100% duty cycle) our little circuit
dissipates around 5W! Keeping it from over-heating in this condition is unfeasible. We’ve allocated largish thermal
places on the PCB to improve cooling efficiency, but really, the intention is to not leave the LED full-on for more than a
couple of seconds. Rather, working continuously at lower brightness is perfectly fine as well as generating fast, bright
pulses periodically.

But we wanted to make sure that the LEDs would not get dangerously hot even by accident. For that reason, the Pixie
firmware uses the PIC’s on-chip temperature indicator to estimate the board’s temperature and would shut-down the
LED when it gets too hot (above about 70 degrees celsius). It will automatically resume operation when it cools down.
Getting this temperature indicator to work with reasonable precision was a challenge. First, the PIC’s supply voltage
needed to be extra-clean (as described above) and second, to account for variability between different instances of the
PIC, each and every unit goes through an automated calibration process during manufacturing and the temperature
calibration data gets written to the PIC’s flash memory.

Loss of Communication

Have you ever noticed how NeoPixels retain their color if their controller goes away? While this can be considered a
convenient feature in some cases, it is an absolute no-go in a 3W LED case. Losing communications with the controller
for any reason during a high-brightness pulse, that was otherwise intended to be very short, could potentially result in
LEDs being left on for extended periods, consuming a lot of power and dissipating a lot of heat (limited by the over-
temperature feature described above). Even more, what if we have a firmware bug (not that we ever have bugs, but
just for the sake of the discussion ;D) causing the PIC to hang while its LED is on? That would be unacceptable.

Watchdog to the rescue! Remember we told you how awesome the PIC12 is? Another feature that is useful for us is the
watchdog. It will reset the PIC if it doesn’t hear from our firmware that everything is fine for about 2 seconds. In turn,
our firmware will only pet the watchdog every time it gets a valid color and successfully latches it. So unless we hear
from our controller at least every 2 seconds (and in practice, better leave a little margin), the Pixie resets, causing the
LED to turn off until told otherwise.

So unlike NeoPixels, if you want your Pixies to stay on for extended periods, even with no color change, you need to
constantly remind them that you’re alive by sending them their favorite string.

Conclusion

Who would have guessed that designing a circuit having only about 20 simple parts could get so complicated?
Certainly not us! We have done our best to provide a high quality, useful product and learned a lot along the way.
We’re hoping you’ll like the result and enjoyed reading about some of the reasoning behind it.

© Adafruit Industries https://learn.adafruit.com/pixie-3-watt-smart-chainable-led-pixels Page 11 of 29

© Adafruit Industries https://learn.adafruit.com/pixie-3-watt-smart-chainable-led-pixels Page 12 of 29

Assembly

Assembling your Pixies isn't too difficult if you have the right tools and materials. Grab you soldering iron, some thin
wire (we like silicone covered 26 AWG) and some thick hefty wire, we used 10AWG stranded.

For the power wires, make sure to get nice hefty ones

that can handle the current draw. Of course, it matters

how long they're going to be, and how many Pixies are

in the chain, and how much they will be lit up. 16 AWG is

the recommended size.

© Adafruit Industries https://learn.adafruit.com/pixie-3-watt-smart-chainable-led-pixels Page 13 of 29

https://learn.adafruit.com/assets/28129

With thick wires, you may need to get them in place,

then tin them and solder into the pad.

Don't get + and - mixed up! We suggest red wires for +

and black for -

© Adafruit Industries https://learn.adafruit.com/pixie-3-watt-smart-chainable-led-pixels Page 14 of 29

https://learn.adafruit.com/assets/28130
https://learn.adafruit.com/assets/28131

You can clip the wires to make them flush, just make

sure you dont stress the PCB.

You can use a thinner wire for data, in this case we have

a ~22AWG data line. It's soldered onto the out pin here

© Adafruit Industries https://learn.adafruit.com/pixie-3-watt-smart-chainable-led-pixels Page 15 of 29

https://learn.adafruit.com/assets/28132
https://learn.adafruit.com/assets/28133
https://learn.adafruit.com/assets/28134

You may also want a thin wire for your microcontroller

ground, especially if you are going to power the Pixies

seperately

We suggest doing up one Pixie, then testing it. Once

you know you're good to go, disconnect it from power

and data and solder additional Pixies

(please note, in this photo, the green wire is connected

to the output! Just check your Pixies before connecting)

Once you're done with at least on Pixie, go on to the next step where you'll do your test

© Adafruit Industries https://learn.adafruit.com/pixie-3-watt-smart-chainable-led-pixels Page 16 of 29

https://learn.adafruit.com/assets/28135
https://learn.adafruit.com/assets/28136

Arduino Wiring &
Test

Wiring is easy, you can use any pin with a Serial or Software Serial output pin. We don't use the input of a Serial
connection (since the Pixie is 'write only'). Dont forget to power the Pixie with a good 5V supply that can handle the
current draw.

Our example code will use digital #6 but you can change this to any pin later

Download Adafruit_Pixie library

To begin reading sensor data, you will need to download the Adafruit Pixie library.

Open up the Arduino library manager:

Search for the Adafruit Pixie library and install it

© Adafruit Industries https://learn.adafruit.com/pixie-3-watt-smart-chainable-led-pixels Page 17 of 29

We also have a great tutorial on Arduino library installation at:
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://adafru.it/aYM)

Load Demo

Open up File->Examples->Adafruit_Pixie->strandtest and upload to your Arduino wired up to the Pixies

That's it! You're ready to rock out to your bright lights

© Adafruit Industries https://learn.adafruit.com/pixie-3-watt-smart-chainable-led-pixels Page 18 of 29

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

Library Usage

Start by including both SoftwareSerial and the Pixie Library

#include "SoftwareSerial.h"
#include "Adafruit_Pixie.h"

Two #define's will determine which pin you're using for controlling the Pixie's and how many there are

#define NUMPIXELS 3 // Number of Pixies in the strip
#define PIXIEPIN 6 // Pin number for SoftwareSerial output

Pixie's receive data via Serial. You can use hardware serial as well, but our demo is SoftwareSerial. Create a new
SoftSerial device that transmits on the pixie pin

SoftwareSerial pixieSerial(-1, PIXIEPIN);

Then pass in the software or hardware serial device to create the Pixie strip

Adafruit_Pixie strip = Adafruit_Pixie(NUMPIXELS, &pixieSerial);

Start the Pixie object by setting the baud rate, it is 115200 so dont change that number

pixieSerial.begin(115200); // Pixie REQUIRES this baud rate

You can set the overall brightness, this is a one time 'nonreversable' setting, so once you set pixel colors they will
automatically be scaled by the brightness. 0 is all the way off, 255 is all the way on. Default is 255.

 strip.setBrightness(200); // Adjust as necessary to avoid blinding

Then you can set each pixel color with

strip.setPixelColor(n, red, green, blue);

Where n ranges from 0 to numberOfPixels-1 and red, green and blue are the RGB component color, ranging from 0 (off)
to 255

For example, to set pixel #1 to full red:

strip.setPixelColor(0, 255, 0, 0);

To set pixel #5 to a dim green-blue

strip.setPixelColor(4, 0, 30, 30);

Once the pixel colors are set, you'll need to tell the pixie strand to update, call:

© Adafruit Industries https://learn.adafruit.com/pixie-3-watt-smart-chainable-led-pixels Page 19 of 29

 strip.show();

© Adafruit Industries https://learn.adafruit.com/pixie-3-watt-smart-chainable-led-pixels Page 20 of 29

Python &
CircuitPython

It's easy to use the Pixie LEDs with CircuitPython and Python via the Adafruit CircuitPython Pixie (https://adafru.it/BSS)
module. You can light up each LED differently, light them all up the same, or even light up a rainbow!

You can use the pixels with any CircuitPython microcontroller board or with a computer that has GPIO and Python
thanks to Adafruit_Blinka, our CircuitPython-for-Python compatibility library (https://adafru.it/BSN).

CircuitPython Microcontroller Wiring

First wire up the Pixie LEDs as shown in Assembly (https://adafru.it/jDR).

Pixie LEDs use UART (serial) to communicate. They only receive data. So you're only connecting two wires to your
microcontroller board.

Here is an example with a Feather M0 Express:

Feather TX to Pixie data in

Feather Gnd to Pixie shared ground

Pixies require an external power source and sufficient

gauge power wire! Follow the previous pages in this

guide to ensure you have wired them properly.

Python Computer Wiring

Since there's dozens of Linux computers/boards you can use, we will show wiring for Raspberry Pi. For other platforms,
please visit the guide for CircuitPython on Linux to see whether your platform is supported (https://adafru.it/BSN).

Here's the Raspberry Pi wired with UART:

© Adafruit Industries https://learn.adafruit.com/pixie-3-watt-smart-chainable-led-pixels Page 21 of 29

https://github.com/adafruit/Adafruit_CircuitPython_Pixie
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/pixie-3-watt-smart-chainable-led-pixels/assembly
https://learn.adafruit.com/assets/82269
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Pi TX to Pixie data in

Pi Gnd to Pixie shared ground

Pixies require an external power source and sufficient

gauge power wire! Follow the previous pages in this

guide to ensure you have wired them properly.

Here's the Pixie LEDs wired up to a USB to serial converter:

USB serial TX to Pixie data in

USB serial ground to Pixie shared ground

Pixies require an external power source and sufficient

gauge power wire! Follow the previous pages in this

guide to ensure you have wired them properly.

CircuitPython Installation of Pixie Library

You'll need to install the Adafruit CircuitPython Pixie (https://adafru.it/BSS) library on your CircuitPython board.

First make sure you are running the latest version of Adafruit CircuitPython (https://adafru.it/Amd) for your board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find and install these

© Adafruit Industries https://learn.adafruit.com/pixie-3-watt-smart-chainable-led-pixels Page 22 of 29

https://learn.adafruit.com/assets/82270
https://learn.adafruit.com/assets/82439
https://github.com/adafruit/Adafruit_CircuitPython_Pixie
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython

libraries from Adafruit's CircuitPython library bundle (https://adafru.it/ENC). Our CircuitPython starter guide has a great
page on how to install the library bundle (https://adafru.it/ABU).

Copy the necessary libraries from the bundle to the lib folder on your CIRCUITPY drive:

adafruit_pixie.mpy
adafruit_bus_device

Before continuing, make sure your board's lib folder has the adafruit_pixie.mpy and adafruit_bus_device files and
folders copied over

Next connect to the board's serial REPL (https://adafru.it/Awz) so you are at the CircuitPython >>> prompt.

Single Board Computer Python Installation of the Pixie Library

You'll need to install the Adafruit_Blinka library that provides the CircuitPython support in Python. This may also
require enabling I2C on your platform and verifying you are running Python 3. Since each platform is a little different,
and Linux changes often, please visit the CircuitPython on Linux guide to get your computer
ready (https://adafru.it/BSN)!

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-pixie

If your default Python is version 3 you may need to run 'pip' instead. Just make sure you aren't trying to use
CircuitPython on Python 2.x, it isn't supported!

CircuitPython & Python Usage

To demonstrate usage, we'll initialise the LEDs and then change the color, brightness and more using the board's
Python REPL.

For CircuitPython, run the following code to import the necessary modules and initialise the UART object:

import board
import adafruit_pixie
import busio
uart = busio.UART(board.TX, rx=None, baudrate=115200)

For use with Linux and Python, ensure you have UART properly enabled on your computer. This
guide (https://adafru.it/CEk) shows how to do this on Raspberry Pi. Once enabled, run the following code to import the
necessary modules and initialise the UART object:

import time
import adafruit_pixie
import serial
uart = serial.Serial("/dev/ttyS0", baudrate=115200, timeout=3000)

Note that on single board computers other than Raspberry Pi, the serial port may not be available or coded to
be the console. Check the board documentation for serial port use.�

© Adafruit Industries https://learn.adafruit.com/pixie-3-watt-smart-chainable-led-pixels Page 23 of 29

https://circuitpython.org/libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/the-repl
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/uart-serial

Run the following to set the number of Pixies to 2 , and initialise the pixies object. If you have more or less than two

Pixies connected, change num_pixies to match. Note that we set the brightness to 0.2 - Pixie LEDs are super bright!

Even at 20% brightness, you may want to point them away from you or place a diffuser over them.

num_pixies = 2 # Change this to the number of Pixie LEDs you have.
pixies = adafruit_pixie.Pixie(uart, num_pixies, brightness=0.2)

Now you're ready to change your LEDs using any of the following:

fill - Color all Pixies a given color.
brightness - Change the brightness of the LEDs by setting to a number between 0 and 1 representing a
percentage from 0 to 100%.
show - Update the LED colors if auto_write is set to False .

pixies[0] = (0, 255, 0)
pixies[0] = (0, 0, 0)
pixies[1] = (0, 0, 255)
pixies[1] = (0, 0, 0)
pixies.fill((255, 0, 0))
pixies.fill((0, 0, 0))

This code lights up the first Pixie LED blue and turns it off, then lights up the second one green and turns it off. Then it
lights up all the Pixie LEDs red, and then turns all of them off.

That's all there is to using Pixie LEDs with CircuitPython! You can add more Pixies to your string, create rainbow
animations and more. Check out the example below!

Full Example Code

For running the following code on Raspberry Pi or other Linux computer, you must make some changes.
Comment out the CircuitPython-specific code, and uncomment the Linux/Python code.�

© Adafruit Industries https://learn.adafruit.com/pixie-3-watt-smart-chainable-led-pixels Page 24 of 29

import time
import board
import busio
import adafruit_pixie

For use with CircuitPython:
uart = busio.UART(board.TX, rx=None, baudrate=115200)

For use on Raspberry Pi/Linux with Adafruit_Blinka:
import serial
uart = serial.Serial("/dev/ttyS0", baudrate=115200, timeout=3000)

num_pixies = 2 # Change this to the number of Pixie LEDs you have.
pixies = adafruit_pixie.Pixie(uart, num_pixies, brightness=0.2, auto_write=False)

def wheel(pos):
 # Input a value 0 to 255 to get a color value.
 # The colours are a transition r - g - b - back to r.
 if pos < 0 or pos > 255:
 return 0, 0, 0
 if pos < 85:
 return int(255 - pos * 3), int(pos * 3), 0
 if pos < 170:
 pos -= 85
 return 0, int(255 - pos * 3), int(pos * 3)
 pos -= 170
 return int(pos * 3), 0, int(255 - (pos * 3))

while True:
 for i in range(255):
 for pixie in range(num_pixies):
 pixies[pixie] = wheel(i)
 pixies.show()
 time.sleep(2)
 pixies[0] = (0, 255, 0)
 pixies[1] = (0, 0, 255)
 pixies.show()
 time.sleep(1)
 pixies.fill((255, 0, 0))
 pixies.show()
 time.sleep(1)
 pixies[::2] = [(255, 0, 100)] * (2 // 2)
 pixies[1::2] = [(0, 255, 255)] * (2 // 2)
 pixies.show()
 time.sleep(1)

© Adafruit Industries https://learn.adafruit.com/pixie-3-watt-smart-chainable-led-pixels Page 25 of 29

Python Docs

Python Docs (https://adafru.it/C5u)

© Adafruit Industries https://learn.adafruit.com/pixie-3-watt-smart-chainable-led-pixels Page 26 of 29

https://circuitpython.readthedocs.io/projects/pixie/en/latest/

Downloads

Datasheets

PIC12(L)F157X (https://adafru.it/iEr) - 8-bit PIC microcontrller processor used
IRLML2060 (https://adafru.it/iEs) - Power transistor for each R G B channel
3W RGB LED (https://adafru.it/iEt)
Fritzing object in the Adafruit Fritzing Library (https://adafru.it/aP3)
EagleCAD PCB files in GitHub (https://adafru.it/rxd)

Schematic

Click to embiggen

Fabrication Print

Dims in inches

© Adafruit Industries https://learn.adafruit.com/pixie-3-watt-smart-chainable-led-pixels Page 27 of 29

http://www.microchip.com/wwwproducts/Devices.aspx?product=PIC12F1572
http://www.adafruit.com/datasheets/irlml2060pbf.pdf
https://www.adafruit.com/images/product-files/2530/FD-3RGB-Y2.pdf
https://github.com/adafruit/Fritzing-Library
https://github.com/adafruit/Pixie-3W-Smart-LED-PCB

© Adafruit Industries https://learn.adafruit.com/pixie-3-watt-smart-chainable-led-pixels Page 28 of 29

© Adafruit Industries Last Updated: 2019-11-15 07:34:28 PM UTC Page 29 of 29

	Guide Contents
	Overview
	Pinouts
	Design
	Overview
	Microcontroller
	Constant Current Driver
	Color and Brightness Control
	Daisy-Chaining
	Dealing With Supply Noise
	Power Dissipation and Over-Temperature Protection
	Loss of Communication
	Conclusion
	Assembly
	Arduino Wiring & Test
	Download Adafruit_Pixie library
	Load Demo
	Library Usage
	Python & CircuitPython
	CircuitPython Microcontroller Wiring
	Python Computer Wiring
	CircuitPython Installation of Pixie Library
	Single Board Computer Python Installation of the Pixie Library
	CircuitPython & Python Usage
	Full Example Code

	Python Docs
	Downloads
	Datasheets
	Schematic
	Fabrication Print

